The generator matrix

 1  0  0  1  1  1  1  1  1  1  3  1 X+3  1  1  1  X  1  1  1 X+3 2X+3  1  1 X+3  1  3  1 2X  1 X+3  1  1  1 2X+6  1  1  1 2X  0  1  1  1 2X+6  1  1 X+3  1 X+6  6  1  1  1  1  1  3  1  1  1  1 2X+3  1  1  1  1  1  1 2X+6  1  1  1  1  1  1  3  1 2X 2X+3 2X+6  1  1 2X+6  6  1  1  1
 0  1  0  0  6 2X+4 2X+1 X+8 X+4 X+5  1  8  1 X+3 2X+2 2X+7  1 2X+8 2X+7  7  1  1 2X+3 2X+8 2X+3 X+6 X+6 X+2  1  1  1  5  6  0  1  4 X+4  5 2X+6  1 2X 2X+5 2X+1  1 X+5  4 X+3  5  1  1 2X+4 2X+6  1 X+4  X  1  1 2X+3 2X+6 2X  1 X+2 X+4 2X+3 X+1 X+8  7  1 2X+5  X X+6 X+6 X+6 X+7 2X+6 2X  1  X 2X+3 X+1 2X+5 2X  1  4  2  3
 0  0  1 2X+4  2  5 2X+1  X X+3 X+2  4 X+1 2X+2  3 2X+4 2X+3  1 2X 2X+5 2X+1  0 X+5  1  5  1 2X+8  1  3  6 2X+5  8 2X+4 2X+8 X+7 X+1  X  4 2X+8  1 X+4 2X+3 X+7 X+1 2X+5 2X+6 X+8  1  6 X+4 X+2 X+3 2X+1 2X+1 X+3 2X+4 2X+6 X+7 X+3  3  8  6 2X+5  2 X+1 X+5 2X+5  6 2X+4 2X 2X 2X+8 X+1 X+6 2X+3  1 2X+8 X+1  1  1 2X+7  1  1 X+7  3 X+3  0
 0  0  0  3  3  3  3  3  3  3  0  3  0  3  6  0  6  0  6  6  3  3  0  6  3  6  6  6  6  0  6  0  0  6  3  6  6  3  0  6  6  0  0  6  6  0  3  0  0  3  6  6  0  0  3  3  3  6  3  3  0  0  6  0  3  6  3  3  3  0  3  6  0  3  0  0  6  3  6  3  6  3  0  6  3  0

generates a code of length 86 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 163.

Homogenous weight enumerator: w(x)=1x^0+510x^163+846x^164+2256x^165+3192x^166+2286x^167+4324x^168+5064x^169+3600x^170+5628x^171+5772x^172+3276x^173+5266x^174+4842x^175+2712x^176+3206x^177+2454x^178+978x^179+1166x^180+876x^181+324x^182+252x^183+84x^184+36x^185+10x^186+24x^187+12x^188+24x^190+2x^192+24x^194+2x^195

The gray image is a code over GF(3) with n=774, k=10 and d=489.
This code was found by Heurico 1.16 in 10.1 seconds.